A Pythagorean Approach in Banach Spaces

نویسنده

  • JI GAO
چکیده

Let X be a Banach space and let S(X)= {x ∈ X , ‖x‖ = 1} be the unit sphere of X . Parameters E(X) = sup{α(x), x ∈ S(X)}, e(X) = inf{α(x), x ∈ S(X)}, F(X) = sup{β(x), x ∈ S(X)}, and f (X) = inf{β(x), x ∈ S(X)}, where α(x) = sup{‖x + y‖2 + ‖x − y‖2, y ∈ S(X)}, and β(x) = inf{‖x + y‖2 + ‖x− y‖2, y ∈ S(X)} are introduced and studied. The values of these parameters in the lp spaces and function spaces Lp[0,1] are estimated. Among the other results, we proved that a Banach space X with E(X) < 8, or f (X) > 2 is uniform nonsquare; and a Banach space X with E(X) < 5, or f (X) > 32/9 has uniform normal structure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximate a quadratic mapping in multi-Banach spaces, a fixed point approach

Using the fixed point method, we prove the generalized Hyers-Ulam-Rassias stability of the following functional equation in multi-Banach spaces:begin{equation} sum_{ j = 1}^{n}fBig(-2 x_{j} + sum_{ i = 1, ineq j}^{n} x_{i}Big) =(n-6) fBig(sum_{ i = 1}^{n} x_{i}Big) + 9 sum_{ i = 1}^{n}f(x_{i}).end{equation}

متن کامل

Weak parallelogram laws on banach spaces and applications to prediction

This paper concerns a family of weak parallelogram laws for Banach spaces. It is shown that the familiar Lebesgue spaces satisfy a range of these inequalities. Connections are made to basic geometric ideas, such as smoothness, convexity, and Pythagorean-type theorems. The results are applied to the linear prediction of random processes spanning a Banach space. In particular, theweak parallelogr...

متن کامل

A Class of Hereditarily $ell_p(c_0)$ Banach spaces

We extend the class of Banach sequence spaces constructed by Ledari, as presented in ''A class of hereditarily $ell_1$ Banach spaces without Schur property'' and obtain a new class of hereditarily $ell_p(c_0)$ Banach spaces for $1leq p<infty$. Some other properties of this spaces are studied.

متن کامل

On some fixed points properties and convergence theorems for a Banach operator in hyperbolic spaces

In this paper, we prove some fixed points properties and demiclosedness principle for a Banach operator in uniformly convex hyperbolic spaces. We further propose an iterative scheme for approximating a fixed point of a Banach operator and establish some strong and $Delta$-convergence theorems for such operator in the frame work of uniformly convex hyperbolic spaces. The results obtained in this...

متن کامل

A new approximation method for common fixed points of a finite family of nonexpansive non-self mappings in Banach spaces

In this paper, we introduce a new iterative scheme to approximate a common fixed point for a finite family of nonexpansive non-self mappings. Strong convergence theorems of the proposed iteration in Banach spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006